
Natural Language Processing (NLP) 
for 

Digital Forensics

Mia Mohammad Imran

Hala Ali

Dr. Irfan Ahmed

Dr. Kostadin Damevski



Outline

● Digital Forensics Overview [5 minutes]

● Natural Language Processing (NLP) Overview [55 minutes]

● Enron Case Study with Python [80 minutes]

● Break [20 minutes]

● Authorship Attribution [80 minutes]



Digital Forensics Overview

● Textual forensics, also known as forensic linguistics or forensic text analysis, is a field that involves 
the analysis and interpretation of written or textual evidence for investigative or legal purposes. 

● Digital evidence refers to any electronic data that can be used in legal proceedings.

● Types Textual Digital Evidence:

○ Emails.

○ Chat Logs.

○ Social Media Posts.

○ Text Documents.

○ Web Pages.

○ Instant Messaging Conversations.



Get the Notebook!

Go to the link and download the dataset

https://shorturl.at/cEHM5

https://shorturl.at/cEHM5


NLP Overview

● Natural Language Processing (NLP) is a branch of artificial intelligence that focuses on the 
interaction between computers and human language.

● NLP enables machines to understand, interpret, and generate human language, leading to various 
applications.



NLP Overview: Applications

● Information Extraction: Extract structured information from unstructured text.

● Information Retrieval (IR): Locate and retrieve relevant documents or information that match a 
user's information needs.

● Named Entity Recognition (NER): Identify and extract named entities from text, such as names, 
organizations, locations, and dates.

● Text Classification: Categorize text documents into predefined categories or labels.

● Topic Modeling: Identify underlying topics and themes within a collection of text documents.

● Text Summarization: Generate concise summaries from longer texts.

● Machine Translation: Translate text from one language to another automatically.



NLP Overview: Example of Information Extraction

“We have received a report that a 
4-year-old child named John has gone 
missing at approximately 6 pm in Monroe 
Park.”

● Person: John
● Place: Monroe park
● Time: 6 pm
● Age: 12



NLP Overview: Role of NLP in Digital Forensics

● In the field of Digital Forensics, the analysis of large volumes 
of textual data poses significant challenges.

● NLP plays a vital role in automating analysis and making it 
faster and easier.

● Automated analysis using NLP significantly reduces the time 
and effort required for manual analysis in digital forensics.



NLP Overview: Role of NLP in Digital Forensics



NLP Overview: Techniques

● Text Pre-Processing:
○ Involves cleaning and preparing text data for further analysis.
○ Tasks include removing punctuation, converting to lowercase, and handling special characters.

● Syntactical Analysis:
○ Analyzes the grammatical structure and syntax of sentences.
○ Involves tasks like parsing, identifying sentence boundaries, and analyzing the syntactic relationships 

between words.

● Lexical Analysis:
○ Focuses on analyzing individual words or tokens in a text.
○ Includes tasks like stemming and lemmatization (reducing words to their base form).

● Similarity Measures:
○ Quantify the similarity or relatedness between words, phrases, or documents.
○ Methods include cosine similarity, Jaccard similarity, or Word2Vec-based similarity.



NLP Overview: Techniques

● Word Sense Disambiguation:
○ Resolves the ambiguity of word meanings based on context.
○ Determines the correct sense of a word in a particular context, considering multiple possible 

interpretations.

● Part-of-Speech (POS) Tagging:
○ Assigns grammatical tags to words in a sentence.
○ Tags indicate the words’ function, such as noun, verb, adjective, or adverb.

● N-gram:
○ Refers to a contiguous sequence of N items, such as words or characters in a given text. 
○ It captures local context and sequential dependencies by considering N consecutive items. 

● Language Modeling:
○ Creates statistical models that predict the probability of the next word or sequence of words.
○ Language models learn from large datasets to generate coherent and contextually appropriate text.



● Library:

○ NLTk (Natural Language Toolkit) is a popular Python library for NLP. It provides a wide range of tools and 
resources for NLP.

● To use NLTK for lowercasing, you can follow these steps:

○ Install NLTk:

○ Import the NLTk library: In your Python script or notebook, import the NLTK library using the following line 

of code:

○ Download NLTk Resources: NLTk provides various resources such as corpora, models, and lexicons for 

different NLP tasks:

NLP Basics: Text Preprocessing

pip install nltk

import nltk

nltk.download('all’)



lowercase_text = text.lower()

NLP Basics: Text Preprocessing

● Lowercasing:

○ Converting all uppercase characters in a text to their corresponding lowercase form. 

○ Perform lowercasing: To convert text to lowercase, using python build-in lower() method. For example:



from nltk.tokenize import word_tokenize

tokens = word_tokenize(text)

print("Tokenized text: " , tokens)

NLP Basics: Text Preprocessing

● Tokenization: 

○ Is the process of breaking a text into individual units, known as tokens. These tokens can be words, 
sentences, or even subword units.

○ To tokenize text using NLTK, you can use the word_tokenize() or sent_tokenize() functions.



NLP Basics: Text Preprocessing

● Stop Words Removal:

○ Stopwords are common words that are often considered insignificant and do not carry much meaning in 
the context such as “the,” “and,” “a”, etc.

○ To download the stopwords resource, run the following command: 

nltk.download( 'stopwords')

from nltk.corpus import stopwords

stop_words = set(stopwords.words( 'english'))

filtered_tokens = [token for token in tokens if token.lower() not 

in stop_words]



NLP Basics: Text Preprocessing

● Part of Speech (POS) Tagging: 

○ POS  refers to the grammatical category or syntactic role that a word plays in a sentence. 

○ POS tagging is the process of assigning a specific POS tag to each word in a given text, based on its 
syntactic function.

○ The POS tags used in NLTK follow standard conventions, such as the Penn Treebank POS tags, which are 
widely used in the field of NLP.

○ The pos_tag function from NLTK uses the default tagset defined by the Penn Treebank tagset. 

from nltk import pos_tag

nltk.download( 'maxent_treebank_pos_tagger'

)

pos_tags = pos_tag(filtered_tokens)



NLP Basics:  Penn Treebank Tagger



Stemming: “running” -> “run”
Lemmatization: “running” -> “run”

NLP Basics: Text Preprocessing

● Stemming and Lemmatization:

○ Stemming and lemmatization are techniques used to reduce words to their base or root form.

○ Stemming involves removing prefixes or suffixes from words, while lemmatization aims to bring words to 
their base form by considering their part of speech.



NLP Basics: Text Preprocessing

NLTk provides APIs for various 
Stemming Algorithms: 

● Porter stemming.
● Lancaster stemming.

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

lemmatized_tokens = [lemmatizer.lemmatize(token) for token in 

filtered_tokens]

from nltk.stem import PorterStemmer

stemmer = PorterStemmer()

stemmed_tokens = [stemmer.stem(token) for token in 

filtered_tokens]

from nltk.stem import LancasterStemmer

NLTk provides APIs for various 
Lemmatizing options

● WordNetLemmatizer.
● TreebankWordNetLemmatizer.

You can do lemmatizing with or 
without POS Tagging!

from nltk.stem import TreebankWordNetLemmatizer



NLP Basics: Text Preprocessing Demo in Notebook!

● Lowercasing.

● Tokenization.

● POS Tagging.

● Lemmatization and Stemming.



NLP Basics: Named Entity Recognition (NER)

● NER is the process of identifying and classifying named entities in text data, such as people, 
organizations, and  locations.



NLP Basics: Named Entity Recognition (NER)

● Library:

○ SpaCy:  an open-source library for NLP in Python. It can be used for NER tasks.

○ To use SpaCy for NER task, you can follow these steps:

■ Install SpaCy:  

■ Import SpaCy and Load the Model:                         

pip install spacy

import spacy

# Load the English language model

nlp = spacy.load( "en_core_web_sm" )



import spacy

# Load the English language model
nlp = spacy.load("en_core_web_sm")

# Process the text
doc = nlp("Kenneth Lay was the founder and chairman of Enron Corporation. He was 
indicted on multiple charges related to the scandal, including securities fraud and 
insider trading." )

# Print the named entities
for ent in doc.ents:

    print(ent.text, ent.label_)

 🡸if ent.label_ == "PERSON":
Can you change the code to show only the persons?

NLP Basics: Named Entity Recognition (NER)



NLP Basics: Bag of Word (BoW)

● BoW is a simple yet powerful technique used 
in NLP to represent text data as a collection of 
word frequencies.

● BoW disregards the word order and only 
considers the presence or absence of words in 
a document.

● Steps:
○ Vocabulary construction: Creating a unique set 

of words in the corpus.
○ Document vectorization: Representing each 

document as a vector.

● Library:

○ scikit-learn, also known as sklearn, is a popular 

machine learning library for Python.



NLP Basics: Bag of Word (BoW)

from sklearn.feature_extraction.text import CountVectorizer

documents = ["I love Digital Forensics." ,

   "Digital Forensics is challenging." ]

# Create an instance of CountVectorizer

vectorizer = CountVectorizer()

# Convert a collection of text documents into a numerical 

representation known as the "bag of words"

bow_vectors = vectorizer.fit_transform(documents)

# Print the vocabulary (unique words)

print(vectorizer.get_feature_names_out())

# Print the BoW vectors for the documents

print(bow_vectors.toarray())



NLP Basics: N-Gram

● Refers to contiguous sequences of N items from a given text, where an item can be a character, 
word, or even larger units like phrases. The "N" in N-gram represents the number of items in the 
sequence.

● Application:

○ Text Generation.

○ Information Retrieval.

○ Spell Checking and Correction.

○ Machine Translation.



from nltk.tokenize import word_tokenize

from nltk import ngrams

from collections import Counter

text = "....."

tokens = nltk.word_tokenize(text)

# Calculate N-grams

n_grams = ngrams(tokens, 2)

# Calculate the frequency of N-grams

frequency = Counter(n_grams)

for ngram, count in frequency.most_common():

   print(' '.join(ngram), count)

Can you change the code to get the 
frequency of trigram?

🡸

NLP Basics: N-Gram

● Scikit-learn library provides N-gram API!



NLP Basics: TF-IDF

● TF-IDF (Term Frequency-Inverse Document Frequency) is a numerical statistic used in information 
retrieval and text mining to measure the importance of a term within a document or a collection 
of documents.

● Term Frequency (TF): measures how frequently a term appears in a document.

● Inverse Document Frequency (IDF): measures the rarity or uniqueness of a term in a collection of 
documents. 

● Application:

○ Document Similarity.

○ Information Retrieval.

○ Keyword Extraction.

○ Text Classification.



NLP Basics: TF-IDF

● Scikit-learn library provides TF-IDF vectorizer APIs!

from sklearn.feature_extraction.text import TfidfVectorizer

documents = ["I love Digital Forensics." , 

  "Digital Forensics is challenging." ]

# Create an instance of TfidfVectorizer

vectorizer = TfidfVectorizer()

# Fit the vectorizer to the documents and transform the documents into TF-IDF 

vectors

tfidf_vectors = vectorizer.fit_transform(documents)

# Print the TF-IDF vectors for the documents

print(tfidf_vectors.toarray())



NLP Applications: Information Retrieval (IR)

● Process of finding relevant information from a collection of unstructured or semi-structured data.

● Used in:

○ Search Engines.

○ Recommendation Systems.

○ Question-Answering Systems.



text = "....................."

# Step 1: Convert the text to lowercase

text = text.lower()

# Step 2: Tokenize the text into words

words = text.split()

# Step 3: Create a dictionary to store the frequency of each word

word_freq = {}

# Step 4: Loop through each word and update its frequency

for word in words:

   if word in word_freq:

       word_freq[word] += 1

   else:

       word_freq[word] = 1

# Step 5: Sort the words by their frequency in descending order

sorted_words = sorted(word_freq.items(), key= lambda x: 

x[1],reverse=True)

# Step 6: Print the top 5 most frequent words

for word, freq in sorted_words[: 5]:

   print(f"{word}: {freq}")

NLP Applications: IR Use Case

Finding the most frequent 
words in a text.



text = "..."

# Step 1: Convert the text to lowercase

text = text.lower()

# Step 2.1: Tokenize the text into words

words = text.split()

# Step 2.2: Removing stop words

# Step 3: Create a dictionary to store the frequency of each word

word_freq = {}

# Step 4: Loop through each word and update its frequency in the dictionary

……
# Step 5: Sort the words by their frequency in descending order

……

stop_words=set(stopwords.words( 'english’))🡸
filtered_tokens = [token for token in words if 
token.lower() not in stop_words]

Can you do it after 
applying Stop Word 
removal technique?

NLP Applications: IR Use Case



Can you do it after 
applying Stemming 
technique?

NLP Applications: IR Use Case

text = "..."

# Step 1: Convert the text to lowercase

text = text.lower()

# Step 2.1: Tokenize the text into words

words = text.split()

# Step 2.2: Removing stop words and stemming

# Step 3: Create a dictionary to store the frequency of each word

word_freq = {}

# Step 4: Loop through each word and update its frequency in the dictionary

……
# Step 5: Sort the words by their frequency in descending order

……

stop_words = set(stopwords.words( 'english'))
filtered_tokens = [token for token in words if token.lower() not in 
stop_words]
stemmer = PorterStemmer()
stemmed_tokens = [stemmer.stem(token) for token in filtered_tokens]



text = "......"

# Step 1: Convert the text to lowercase

text = text.lower()

# Step 2: Split the text into sentences

sentences = text.split( ". ")

# Step 3: Define the keyword to search for

keyword = "Energy"

# Step 4: Loop through each sentence and check if it contains the keyword

matching_sentences = []

for sentence in sentences:

   if keyword.lower() in sentence:

       matching_sentences.append(sentence)

# Step 5: Print the sentences that contain the keyword

print(f"Sentences containing the keyword ' {keyword}':")

for sentence in matching_sentences:

   print(sentence.strip() + ".")

Finding out the 
sentences in a given 
text that contain a 
specific keyword.

NLP Applications: IR Use Case



      
   

NLP Applications: Query Searching in Multiple Documents

Finding  the best matched documents in a  
collection of documents.

1. Document Collection.
2. User Queries.
3. Indexing: to facilitate efficient 

searching, documents in the 
collection are indexed.

4. Retrieval Models: retrieve relevant 
documents based on the user queries.

5. Ranking and Scoring: the documents 
are ranked or scored to determine 
their relevance to the query. 



NLP Applications: Query Searching in Multiple Documents

● Boolean Model: Matches documents based on exact term matches.

● Vector Space Model: Represents documents and queries as vectors, calculating their similarity 

using measures like cosine similarity.

● Probabilistic Models: Estimate the probability of a document being relevant to a query based on 

statistical models.



NLP Applications: Text Classification

● Process of assigning text data to predefined categories.

●   Used in:

○ Fake News detection

○ Spam Email detection

○ Sentiment detection

○ Fraud text detection

○ Movie review

● Techniques: rule-based approaches, machine learning models, and deep learning models.



● Naive Bayes Algorithm which is based on Bayes' theorem and assumes independence between features. 
Choose the best class (Ŝ), given feature vector (f):

#Dtermining  the  Naive Bayes classifier, a popular algorithm for text classification.
from nltk.classify import NaiveBayesClassifier

NLP Applications: Naive Bayes Classifier

● NLTk provides Naive Bayes API!



● Download the movie_reviews dataset provided by NLTk. It consists of movie reviews along with their corresponding sentiment 
labels.

nltk.download('movie_reviews')

from nltk.corpus import movie_reviews

neg_reviews = [(preprocess(movie_reviews.raw(fileids=[f])), 'negative') for f in 

movie_reviews.fileids( 'neg')]

pos_reviews = [(preprocess(movie_reviews.raw(fileids=[f])), 'positive') for f in 

movie_reviews.fileids( 'pos')]

reviews = neg_reviews + pos_reviews

● Preprocess the text and prepare data for classification: Extract the positive and negative reviews from the dataset. The fileids 
parameter is used to specify the file(s) to retrieve from the movie_reviews dataset. In this case, the fileids argument is set to [f], 
where f represents a specific file id.

NLP Applications: Movie Reviews Classification using Naive Bayes



split dataset into training and testing sets
split = int(len(reviews)*0.8)
train_set = reviews[:split]
test_set = reviews[split:]

classifier = 
NaiveBayesClassifier.train(train_set)

accuracy = nltk_accuracy(classifier, test_set)

print("Accuracy:", accuracy)

NLP Applications: Movie Reviews Classification using Naive Bayes

● Split dataset into training and testing sets

● Train classifier on training data

● Evaluate classifier on testing data

● Print the Accuracy



Questions?!



Enron Case Study: Data Source

● Enron Dataset: a large collection of emails and related data from the Enron Corporation, an energy 
company that filed for bankruptcy in 2001.

● It contains a vast amount of unstructured textual data, including emails, attachments, and 
metadata, from Enron employees across different organizational levels and departments.

● We have already downloaded this dataset at the beginning!



Enron Case Study: Email Sample



Enron Case Study: Retrieving Emails

● Retrieving email one by one by reading the email files.

# Reading the files one by one

email_rows = []

for root, dirs, files in os.walk('maildir'):

   for file in files:

       with open(os.path.join(root, file), "r", encoding='utf-8', errors='ignore') 

as email_content:

           contents = email_content.read()

           # Each row has two columns: file path and email message

           email_rows.append([root+ '/'+file, contents])



Enron Case Study: Retrieving Emails

● Manipulating default python array is difficult!

● So we use Pandas!

○ Data manipulation library.

○ Provides data structures and functions for efficiently working with structured data.

○ Pandas introduces DataFrame which provides two-dimensional axis (row and columns). 

import pandas as pd
 
emails_df = pd.DataFrame(email_rows, columns = 
['file','message'])
print(emails_df.shape)



● Calling the emails_df.head() method to display  the first few rows of the DataFrame. By 
default, it shows the top 5 rows.

Enron Case Study: Retrieving Emails



import email

messages = list(map(email.message_from_string, emails_df[ 'message’]))

Enron Case Study: Retrieving Emails

● emails_df is python object. We need to convert it to readable emails.

● We use email library for this purpose.

● API for converting to email is message_from_string.



Enron Case Study: Email Contents

● How Does the Email Look after Converting?

print(messages[1])

Message-ID: 
<2230250.1075863609465.JavaMail.evans@thyme>
Date: Tue, 5 Feb 2002 11:48:27 -0800 (PST)
From: sean.crandall@enron.com
To: karen.buckley@enron.com
Subject: RE: URGENT URGENT URGENT - DRUG TEST
Mime-Version: 1.0
Content-Type: text/plain; charset=us-ascii
Content-Transfer-Encoding: 7bit
X-From: Crandall, Sean 
</O=ENRON/OU=NA/CN=RECIPIENTS/CN=SCRANDA>
X-To: Buckley, Karen 
</O=ENRON/OU=NA/CN=RECIPIENTS/CN=Kbuckley>
X-cc: 
X-bcc: 
X-Folder: \ExMerge - Crandall, Sean\Sent Items
X-Origin: CRANDELL-S
X-FileName: 

I completed mine on Monday the 4th.

 -----Original Message-----
From: Buckley, Karen  
Sent: Monday, February 04, 2002 4:08 PM
Subject: URGENT URGENT URGENT - DRUG TEST
Importance: High
Sensitivity: Private

If you have not already taken your drug test , please 
do so by Tuesday, 5th February.   This process needs 
to be completed and results fed back to UBS prior to 
your start date.   You cannot commence employment with 
UBS until they have this data which takes 
approximately 5 days from date of test.

If for any reason you cannot take this test by 
tomorrow, please advise.    Also, if you have 
completed your test please let me know so I can update 
the UBS records.

Regards,

Karen.



● What are the email fields (keys)?

Enron Case Study: Email Fields

keys = messages[ 0].keys()

['Message-ID',
 'Date',
 'From',
 'To',
 'Subject',
 'Mime-Version',
 'Content-Type',
 'Content-Transfer-Encoding',
 'X-From',
 'X-To',
 'X-cc',
 'X-bcc',
 'X-Folder',
 'X-Origin',
 'X-FileName']



By extracting and analyzing these email fields as features, digital forensic investigators can gain valuable 
insights into email communications, identify potential patterns, detect anomalies, and uncover evidence 
that may be relevant to their investigations.

Enron Case Study: Email Fields as Features for Digital Forensics

● From: The sender of the email.
● To: The recipient(s) of the email.
● CC and BCC: Additional recipients of the email.
● Subject: provides  insights into the topic or purpose of the email.
● Date and Time: helps establish timelines, patterns, or time-sensitive information related to the 

email communication.
● Message-ID: A unique identifier assigned to each email to track and link related email 

conversations or identify potential email chains.
● Attachments: Files or documents attached to the email.
● Email Body: The main content of the email.
● Headers: Additional metadata and routing information.



Enron Case Study: Email Fields as Features for Digital Forensics

● We will make each keys a pandas DataFrame column in emails_df.

for key in keys:

   emails_df[key] = [doc[key] for doc in messages]

● However the keys did not contain the body! This is called payload. We will parse them separately.

def get_content (msg, max_word_len=30):

   return msg.get_payload()

emails_df['content'] = list(map(get_content, messages))



Enron Case Study: Email Fields as Features for Digital Forensics

● Sometimes there are multiple email addresses from in 'From' and 'To' columns. So we will 
separate them too.

def split_email_addresses (line):

   if line:

       addrs = line.split( ',')

       addrs = frozenset(map(lambda x: x.strip(), addrs))

   else:

       addrs = None

   return addrs

emails_df['From'] = emails_df[ 'From'].map(split_email_addresses)

emails_df['To'] = emails_df[ 'To'].map(split_email_addresses)



● Some keys are not important. We will remove them.

○ 'file', 'Mime-Version', 'Content-Type', and 'Content-Transfer-Encoding' 
from the DataFrame.

Enron Case Study: Email Fields as Features for Digital Forensics

emails_df = emails_df.set_index( 'Message-ID').drop(['file', 

'Mime-Version' , 'Content-Type' , 'Content-Transfer-Encoding' ], axis=1)

● Next we will preprocess Subject and content column using the preprocess concepts from 
NLP basics!

○ Lowercasing, tokenization, stopword removal, and lemmatization.

emails_df['Subject'] = emails_df[ 'Subject'].apply(text_preprocessing)

emails_df['content'] = emails_df[ 'content'].apply(text_preprocessing)



"PHC Statement draft To: Parties Who Participated in the A.01-09-024 (SoCalGas and SDG&E BCAP) 
Meet and Confer: Attached is a proposed PHC Statement as required by ALJ Brown in her Ruling of November 5, 2001. 
Per that Ruling, this Statement must be filed within 10 days of our meeting (which by my calculation would be the 26th of 
November). I would REALLY like to get it filed on the 21st if possible, before the Thanksgiving weekend. I tried to keep the 
Statement simple, while reflecting the consensus views articulated at the meeting. I tried not to go into too much detail on 
the description of some of the outstanding CPUC proceedings that may affect this case, but wanted to give the judge some 
flavor for each proceeding. I ask that each of you let me know by noon next Tuesday (the 20th) if you want to sign on. I 
will incorporate any non-substantive edits you may have. For substantive edits (hopefully there will be few if any) I will 
do my best to incorporate. However, let's remember that none of us want to be de-positioned by what is said in this document 
so argumentative statements will be ignored. If only nonsubstantive edits are received, I will file on behalf of all 
participating parties without further review. If substantive changes are made, a second review will be provided. I hope we 
can keep this from becoming an unwieldy exercise. I ask for your cooperation and appreciate your input. If you want to 
provide your individual PHC Statement, fine. 
Just let me know so I can take your client's name off this one. 
                Thanks again."

Enron Case Study: Manual Task

● For a given email, can you find individual names, organization names, and specific dates 
mentioned in the content?



import spacy

# Load the English language model
nlp = spacy.load( "en_core_web_sm" )

# Process the text
doc = nlp(email_text)

# Print the named entities
for ent in doc.ents:
    if ent.label_ == "PERSON" or ent.label_ == "ORG" or ent.label_ == "DATE":
        print(ent.text, ent.label_)

Enron Case Study: Manual Task

Difficult !!!!!!
That’s why NLP is used to make the text analysis easier and faster. 



● Can you find how many emails mentioned the keyword "PHC Statement"?

Enron Case Study: Information Retrieval

counter = 0
keyword = 'PHC Statement’ 
first = False
for email in emails_df['content_new']:
    if keyword in email:
        counter = counter + 1
        if first is False:
            print(email)
            first = True
# if keyword is in the content, increase the counter
print(counter)

🡸



import matplotlib.pyplot as plt

sub_df = emails_df[[ 'From', 'content', 'Date']].dropna()
display(sub_df.shape)
grouped_by_people = sub_df.groupby( 'From').agg({ 'Date': 'count'})
grouped_by_people.rename(columns={ 'Date': 'Count'}, inplace=True)
grouped_by_people.sort_values( 'Count', ascending=False).head()
top_10_frequent = grouped_by_people[ 'Count'].sort_values(ascending = False)[:10]
print(top_10_frequent)

Enron Case Study: Visualization

● Library: Matplotlib: is a popular data visualization library in Python. It provides a wide range of 
functions and tools for creating various types of plots and visualizations, such as line plots, scatter 
plots, bar plots, and histograms.

● Who sent most emails? Finding the top 10 email address.



sub_df = emails_df[[ 'To', 'content', 'Date']].dropna()
display(sub_df.shape)
grouped_by_people = sub_df.groupby( 'To').agg({ 'Date': 'count'})
grouped_by_people.rename(columns={ 'Date': 'Count'}, inplace=True)
grouped_by_people.sort_values( 'Count', ascending=False).head()
top_10_frequent = grouped_by_people[ 'Count'].sort_values(ascending = False)[:10]
print(top_10_frequent)

Enron Case Study: Visualization

● Can you find who received most emails? Find the top 10 email address?



Enron Case Study: Clustering

● Clustering is a technique used to group similar documents or pieces of text together based on 
their content. 

● Clustering helps discover inherent patterns, similarities, and relationships within a collection of 
documents without prior knowledge of their labels or categories.

● Principal Component Analysis (PCA): Dimensionality reduction technique, often used to transform 
high-dimensional data into a lower-dimensional space while preserving the most important 
information.

● Different clustering techniques:

○ K-means

○ Gaussian Mixture Models



from sklearn.cluster import KMeans

from sklearn.decomposition import 

PCA

Enron Case Study: K-means Clustering

● K-means clustering is a type of unsupervised learning method. 

● The goal of this algorithm is to find groups in the data, whereas the no. of groups is represented 
by the variable K.

● Library:

○ scikit-learn, also known as sklearn, is a popular machine learning library for Python. It provides a wide 
range of tools and algorithms for various machine learning tasks, including classification, regression, 
clustering, dimensionality reduction, and model selection.

○ Provides API form K-means as well as PCA.



Enron Case Study: K-means Clustering

1. Representing  the text in a numerical vectors, using TF-IDF.  TF-IDF stands for Term 
Frequency-Inverse Document Frequency.

2. Defining the  PCA algorithm.  PCA is widely used for feature extractions, noise filtering, etc.

3. Computing the principal components of the data and transforming  the data to the new 
lower-dimensional space.

pca = PCA(n_components = 2)

vectorizer = TfidfVectorizer()

tfidf_matrix = vectorizer.fit_transform(documents)

pca_matrix = pca.fit_transform(tfidf_matrix.toarray())



Enron Case Study: K-means Clustering

4. Define the number of clusters. 

5. Applying K-means  clustering with number of iterations.

6. Get the cluster labels for each document.

k = 3

kmeans = KMeans(n_clusters= k, max_iter=600, algorithm = 'auto')

fitted = kmeans.fit(pca_matrix)

labels = kmeans.predict(pca_matrix)



# Perform Gaussian Mixture Model (GMM) clustering

gmm = GaussianMixture(n_components=k, random_state=42)

● Exercise-1:  Run the model by increasing the number of clusters and changing the number of 
components in PCA. Observe how the plots changes.

● Exercise-2:  Clustering using Gaussian Mixture Models (GMM).

Enron Case Study: K-means Clustering Exercise



● Topic modeling is a technique used in NLP and ML to identify latent topics or themes present in a 
collection of documents. 

● It allows for the discovery of hidden patterns and structures within textual data without prior 
knowledge of the specific topics.

● Topic modeling assumes that each document in a collection is a mixture of different latent topics, 
and each topic is characterized by a distribution of words. 

● Topic modeling is often based on probabilistic models, such as Latent Dirichlet Allocation (LDA). 
These models generate a set of topics and associated word distributions, considering the 
probability of a document belonging to a particular topic and the probability of a word being 
generated by a particular topic.

Enron Case Study: Topic Modeling



import gensim

from gensim import corpora

● gensim: is a Python library for topic modeling. It is designed to handle large-scale text corpora 
efficiently and offers a simple and intuitive API for various NLP tasks.

● gensim offers methods for computing document similarity based on different similarity measures, 
such as cosine similarity. 

● The "corpora" module in Gensim focuses on building and working with corpora, which are 
collections of texts or documents used for analysis and modeling.

Enron Case Study: Topic Modeling Library



Enron Case Study: Topic Modeling Steps

1. Tokenizing the text

2. Creating a Gensim Dictionary: to map between words and their unique numeric IDs.

3. Extracting the whole words in the text with their frequencies. doc2bow () converts the text into a 
bag-of-words representation. 

# Tokenize the documents

tokenized_documents = [doc.split() for doc in emails_df_sampled['content']]

dictionary = corpora.Dictionary(tokenized_documents)

corpus = [dictionary.doc2bow(doc) for doc in tokenized_documents]



num_topics = 3

lda_model = gensim.models.LdaModel(corpus=corpus, id2word=dictionary, num_topics=num_topics)

Enron Case Study: Topic Modeling Steps

4. Define the number of topics that the LDA model will attempt to identify.

5. Applying LDA model on the the document-term matrix in the form of a bag-of-words 
representation. id2word: The id2word parameter is a dictionary that maps unique IDs to 
words in the corpus. 



Questions?!



Authorship Attribution

● The process of determining the author of a 
given text based on linguistic patterns and 
stylometric analysis.

● Involves examining patterns, writing style, and 
content.

● Different from Author Identification:

○ Authorship Attribution aims to identify a specific 
author among a set of potential authors, often 
referred to as the candidate authors or suspects.

○ Author Identification aims to verify the 
authorship claim of a particular text by matching 
it to the writing style of a known author.



Authorship Attribution: Applications

● Forensic Linguistics:

○ Helps in legal and criminal investigations by identifying anonymous or disputed texts.

○ Provides valuable evidence in cases involving threats, ransom notes, or suspicious communications.

● Plagiarism Detection:

○ Assists in academia and content creation by detecting instances of plagiarism.

○ Helps maintain academic integrity and originality in research, writing, and publishing.

● Literary Studies:

○ Allows for the analysis and understanding of the works of different authors and literary movements.

○ Sheds light on an author's unique style, thematic preferences, and influences.



Authorship Attribution: Steps Using Machine Learning

● Data collection: gather a dataset of texts written by different authors.

● Data preprocessing: preprocess the text data to make it suitable for analysis.

● Feature extraction and selection: commonly used features:

○ Stylometric Features: Capture stylistic aspects of writing, including word and sentence lengths, vocabulary 
richness, punctuation usage, and syntactic patterns.

○ N-gram Features: Represent the frequency of occurrence of N-grams (sequences of n consecutive words) 
in the text.

○ TF-IDF Features: Measure the importance of words or terms in a document relative to a corpus.



Authorship Attribution: Steps Using Machine Learning

● Data split: Divide the dataset into training and testing sets.

○ The training set will be used to train the machine learning model, while the testing set will be used to 
evaluate its performance on unseen data.

● Model selection and training: Select an appropriate machine learning algorithm and train the 
model using the training dataset.

○ Commonly used ML modes are: Decision Tree, Naive Bayes, SVM, k-NN, etc.

● Model evaluation: Using the trained model to make predictions or decisions on new, unseen data.

○ Commonly used evaluation metrics are: accuracy, precision, recall, and F1-score.



Authorship Attribution: Data Collection

● Data source: Publicly available dataset crawled from Twitter.

○ Open Authorship Attribution.ipynb from google drive folder.

● Data format: CSV.

● Library: Importing data using Pandas.

○ provides data structures and functions.

○ efficiently working with structured data.

import pandas as pd

# Load the dataset

data = pd.read_csv('authorship.csv', sep=',')



Authorship Attribution: Data Sample

● Contains 18.6k tweets from 8 different persons.



Authorship Attribution: Data Preprocessing

● Same as we discussed in NLP basics!

○ Preprocess the text data (remove punctuation, lowercase, tokenize, etc).

# Remove punctuation and convert to lowercase

data['processed_text' ] = data['Tweet description' ].apply(lambda x: 

x.translate(str.maketrans('', '', string.punctuation)).lower())

# Tokenize the text

data['tokenized_text' ] = data['processed_text' ].apply(word_tokenize)

# Remove stop words

stop_words = set(stopwords.words( 'english'))

data['filtered_text' ] = data['tokenized_text' ].apply(lambda x: [word for word in x if word 

not in stop_words])



Authorship Attribution Feature: Stylometric Features

● One of the simplest methods for authorship attribution is analyzing stylometric features. 

● Stylometric Features involve analyzing various stylistic aspects of writing, such as word length, sentence 
length, and vocabulary richness.

● These features help capture the unique writing style of authors.

# Calculate stylometric features

data['avg_word_length' ] = data['tokenized_text' ].apply(lambda x: sum(len(word) for word in x) 

/ len(x))

data['avg_sentence_length' ] = data['tokenized_text' ].apply(lambda x: len(x) / 

(x.count('.')+1))

data['vocabulary_richness' ] = data['tokenized_text' ].apply(lambda x: len(set(x)) / len(x))



Authorship Attribution: Data Split

● Before training a model, we need to split the data into training and testing sets. This allows us to 
evaluate the model's performance on unseen data.

● Usually data set are divided into 80%-20% between training and test set.

● Used library: scikit-learn (sklearn).

○ Provides an API (train_test_split).

from sklearn.model_selection import train_test_split

# Prepare the data

X = data[['avg_word_length' , 'avg_sentence_length' , 'vocabulary_richness' ]]

y = data['Name']

# Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size= 0.2, random_state= 42)



Authorship Attribution Classifier: Naive Bayes

● Based on Bayes' theorem and assumes independence between features.

● Known for its simplicity, and effectiveness in text classification tasks.

● Widely used in various NLP tasks, including spam detection, sentiment 
analysis, and authorship attribution.

● For authorship attribution task, it calculates the probability of a given text 
belonging to a particular author based on the frequencies of features 
present in the text.



Authorship Attribution Classifier: Naive Bayes

● sklearn provides high-level API for Naive Bayes.

● Naive Bayes classifiers can be trained using different variants, such as Multinomial Naive Bayes, 
Bernoulli Naive Bayes, and Gaussian Naive Bayes, depending on the nature of the features.

from sklearn.naive_bayes import 

MultinomialNB

# Train the classifier

model = MultinomialNB()

model.fit(X_train, y_train)
from sklearn.naive_bayes import BernoulliNB

from sklearn.naive_bayes import GaussianNB



Authorship Attribution: Evaluation Metrics

Precision: Of all positive 
predictions, how many are 
really positive?

Recall: Of all real positive 
cases, how many are 
predicted positive?

Accuracy: How many 
predictions are correct?

F1-score = Harmonic mean 
of precision and recall.



Authorship Attribution: Evaluation Metrics

● sklearn provides high-level API for Evaluation metrics.

from sklearn.metrics import accuracy_score

accuracy = accuracy_score(y_true, y_pred)

from sklearn.metrics import precision_score

precision = precision_score(y_true, y_pred)

from sklearn.metrics import recall_score

recall = recall_score(y_true, y_pred)

from sklearn.metrics import f1_score

f1 = f1_score(y_true, y_pred)



Authorship Attribution Case Study: Demo on Notebook!

● Demo: Using Stylometrics features.

● Naive Bayes (MultinomialNB) as classifier.

● Accuracy and F1-score as evaluation metrics.

● Exercise: BernoulliNB and GaussianNB.

● Observe the performance differences.



Authorship Attribution: More Classifiers!

● k-Nearest Neighbours (k-NN).

● Decision Tree.

● Support Vector Machine (SVM).



Authorship Attribution Classifier: k-Nearest Neighbours

● k-NN  is a simple and intuitive algorithm that classifies new data 
points based on their similarity to the labeled data points in the 
training set.

● Select the k nearest neighbors (data points) from the training 
set based on the calculated distances.

● k is a predefined parameter that determines the number of 
neighbors to consider.

● sklearn provides high level API.

from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier(n_neighbors= 3)

model.fit(X_train, y_train)



Authorship Attribution Case Study: Exercise on Notebook!

● Using Stylometrics features.

● k-NN as classifier.

● Accuracy and F1-score as evaluation metrics.

from sklearn.neighbors import KNeighborsClassifier

model = KNeighborsClassifier(n_neighbors= 3)

model.fit(X_train, y_train)



Authorship Attribution Classifier: Decision Tree

● Decision tree is a supervised machine learning algorithm, often 
used in various text classification tasks. 

● It is a flowchart-like structure where each internal node 
represents a feature or attribute, each branch represents a 
decision rule, and each leaf node represents the outcome.

○ Makes predictions based on a sequence of logical rules learned 
from the training data.

● sklearn provides high level API.

from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()

model.fit(X_train, y_train)

Simple Decision Tree



Authorship Attribution Case Study: Exercise on Notebook!

● Using Stylometrics features.

● Decision Tree as classifier.

● Accuracy and F1-score as evaluation metrics.

from sklearn.tree import DecisionTreeClassifier

model = DecisionTreeClassifier()

model.fit(X_train, y_train)



Authorship Attribution Classifier: Support Vector Machine

● In SVM, the goal is to find a hyperplane that separates the data 
points belonging to different classes with the maximum margin. 

● sklearn provides multiple high level APIs: LinearSVC and SVC.

● LinearSVC is an implementation of SVM that uses a linear kernel.

● SVC is a more general implementation of SVM that supports 
various kernel functions. It can handle both linearly separable 
and non-linearly separable data by transforming the feature 
space using kernel functions.

from sklearn.svm import 

LinearSVC

model = LinearSVC()

model.fit(X_train, y_train)

from sklearn.svm import SVC

model = SVC()

model.fit(X_train, y_train)



Authorship Attribution Case Study: Exercise on Notebook!

● Using Stylometrics features.

● SVM as classifier.

● Accuracy and F1-score as evaluation metrics.

from sklearn.svm import 

LinearSVC

model = LinearSVC()

model.fit(X_train, y_train)

from sklearn.svm import SVC

model = SVC()

model.fit(X_train, y_train)



Authorship Attribution: What about Other Features?

● Bag of Words.

● N-grams.

● TF-IDF.

from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer

# Extract Bag-of-Words (BoW) features

bow_vectorizer = CountVectorizer()

bow_features = bow_vectorizer.fit_transform(data[ 'processed_text' ])

from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer

# Extracting bi-grams and tri-grams

vectorizer = CountVectorizer(ngram_range=( 2, 3))  

ngram_matrix = vectorizer.fit_transform(data[ 'processed_text' ])

from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer

# Extract TF-IDF features

tfidf_vectorizer = TfidfVectorizer()

tfidf_features = tfidf_vectorizer.fit_transform(data[ 'processed_text' ])



Authorship Attribution: Bag of Words as Feature

● Using sklearn API to extract features.

from sklearn.feature_extraction.text import CountVectorizer

bow_vectorizer = CountVectorizer()

bow_features = bow_vectorizer.fit_transform(data[ 'processed_text' ])



Authorship Attribution Case Study: Demo on Notebook!

● Demo: Using BoW as features for Naive Bayes

● Observe the performance differences from Stylometric features.

from sklearn.feature_extraction.text import CountVectorizer

bow_vectorizer = CountVectorizer()

bow_features = bow_vectorizer.fit_transform(data[ 'processed_text' ])

from sklearn.naive_bayes import 

MultinomialNB

# Train the classifier

model = MultinomialNB()

model.fit(X_train, y_train)



Authorship Attribution: N-grams as Feature

● Using sklearn API to extract features.

from sklearn.feature_extraction.text import CountVectorizer

# Example: Extracting bi-grams and tri-grams

vectorizer = CountVectorizer(ngram_range=( 2, 3))  

ngram_matrix = vectorizer.fit_transform(data[ 'processed_text' ])

# Example: Extracting uni-gram and bi-grams

vectorizer = CountVectorizer(ngram_range=( 1, 2))  

ngram_matrix = vectorizer.fit_transform(data[ 'processed_text' ])



Authorship Attribution Case Study: Demo on Notebook!

● Demo: Using N-grams (bi-gram and tri-gram) as features for all classifiers.

● Observe the performance discrepancy among the models.

● Exercise: Using uni-gram and bi-gram as features for Naive Bayes.

● Observe the performance from using bi-gram and tri-grams.



Authorship Attribution Case Study: Demo on Notebook!

● Demo: Using N-grams (bi-gram and tri-gram) as features for all classifiers.

● Observe the performance discrepancy among the models.

● Exercise: Using uni-gram and bi-gram as features for Naive Bayes.

● Observe the performance from using bi-gram and tri-grams.

Model Accuracy F1-score

Naive Bayes 0.68 0.68

Decision Tree 0.51 0.52

SVM (LinearSVC) 0.65 0.66

KNN 0.14 0.06



Authorship Attribution: TF-IDF as Feature

● Using sklearn API to extract features.

from sklearn.feature_extraction.text import TfidfVectorizer

# Extract TF-IDF features

tfidf_vectorizer = TfidfVectorizer()

tfidf_features = tfidf_vectorizer.fit_transform(data[ 'processed_text' ])



Authorship Attribution Case Study: Demo on Notebook!

● Using TF-IDF as features for all classifiers.

● Observe the differences from N-grams.

● Exercise: Implement k-NN with TF-IDF and check its performance. How it differs from N-grams?



Authorship Attribution Case Study: Demo on Notebook!

● Using TF-IDF as features for all classifiers.

● Observe the differences from N-grams.

● Exercise: Implement k-NN with TF-IDF and check its performance. How it differs from N-grams?

Model Accuracy F1-score

Naive Bayes 0.80 0.80

SVM (LinearSVC) 0.85 0.85

KNN 0.75 0.75



Authorship Attribution: What about combining features?

● You can combine features!

○ N-grams.

○ TF-IDF.

● You can stack features.

● Used library for stacking: 
hstack API from scipy.

○ SciPy is a free and 
open-source Python 
library used for scientific 
computing and technical 
computing.

from scipy.sparse import hstack

# Extract TF-IDF features

tfidf_vectorizer = TfidfVectorizer()

tfidf_features = 

tfidf_vectorizer.fit_transform(data[ 'processed_text' ]

)

# Extract N-gram features

ngram_vectorizer = CountVectorizer(ngram_range=( 2, 

3))

ngram_features = 

ngram_vectorizer.fit_transform(data[ 'processed_text' ]

)

# Combine TF-IDF and N-gram features

features = hstack([tfidf_features, ngram_features])



Authorship Attribution Case Study: Demo on Notebook!

● Demo: Using both TF-IDF and N-grams as features for all classifiers.

● Exercise: Can you add Bag-of-Words on top of TF-IDF and N-grams?

Model Accuracy F1-score

Naive Bayes 0.76 0.75

SVM (LinearSVC) 0.77 0.78

KNN 0.14 0.05

TF-IDF and N-grams as features



Authorship Attribution: Advances Topics - LLM

● Large Language Model (LLM) fine-tuning is a powerful technique for 
enhancing Authorship Attribution using pre-trained models like BERT, 
RoBERTa, GPT.

● BERT is a popular LLM that has been pre-trained on a large corpus of 
text data to learn contextualized word representations.

○ Wikipedia, English literature.

● We can fine-tune BERT to a specific task, such as Authorship 
Attribution, NER, etc.

● LLMs are memory heavy.  Can’t run them on colab.

○ Usually requires GPU. 

Better than any ML models!



Authorship Attribution: Advances Topics - ChatGPT!

● You can prompt to ChatGPT and similar prompt-based OpenSource LLMs!



Authorship Attribution: Advances Topics - ChatGPT!



Thank You!
Questions?



Survey Link: 
https://forms.gle/BisfsWMgUP

1MiEmr5

https://forms.gle/BisfsWMgUP1MiEmr5
https://forms.gle/BisfsWMgUP1MiEmr5

